Search results for " Guided waves"

showing 9 items of 9 documents

Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response

2011

International audience; We show theoretically that nonlinear optical media characterized by a finite response time may support the existence of discrete spectral incoherent solitons. The structure of the soliton consists of three incoherent spectral bands that propagate in frequency space toward the low-frequency components in a discrete fashion and with a constant velocity. Discrete spectral incoherent solitons do not exhibit a confinement in the space-time domain, but exclusively in the frequency domain. The kinetic theory describes in detail all the essential properties of discrete spectral incoherent solitons: A quantitative agreement has been obtained between simulations of the kinetic…

01 natural sciencesoptical instabilitiesSchrödinger equation010309 opticssymbols.namesakeand lossesQuantum mechanics0103 physical sciencesDispersion (optics)Dynamics of nonlinear optical systemsOptical solitonssolitons010306 general physicsPropagationNonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]and optical spatio-temporal dynamicsscatteringWave equationAtomic and Molecular Physics and OpticsSupercontinuumNonlinear systemFrequency domainsymbolsoptical chaos and complexitySolitonnonlinear guided waves
researchProduct

The Global-Local Approach for Damage Detection in Composite Structures and Rails

2021

Structural components with waveguide geometry can be probed using guided elastic waves. Analytical solutions are prohibitive in complex geometries, especially in presence of structural discontinuities or defects. The Global-Local (GL) approach provides the solution by splitting the waveguide in “local” and “global” regions. The “local” region contains the part of the structure responsible for the complex scattering of an incident wave. What happens in this region cannot be reproduced analytically. The “global” region is regular and sufficiently far from the scatterer, in order to exploit known analytical wave propagation solutions. The proposed GL approach discretizes the local region by re…

PhysicsAircrafts Composite structures Damage detection Global-Local approach Guided waves Rails Scattering Semi-analytical finite element methodGuided waves scattering Global-Local approach damage detection semi-analytical finite element method composite structures aircrafts railsScatteringWave propagationMathematical analysisWaveguide (acoustics)KinematicsClassification of discontinuitiesSettore ICAR/08 - Scienza Delle CostruzioniFinite element methodEnergy (signal processing)Spectral line
researchProduct

Ultrasonic Guided Waves-Based Monitoring of Rail Head: Laboratory and Field Tests in Advances in Civil Engineering

2010

Recent train accidents have reaffirmed the need for developing a rail defect detection system more effective than that currently used. One of the most promising techniques in rail inspection is the use of ultrasonic guided waves and noncontact probes. A rail inspection prototype based on these concepts and devoted to the automatic damage detection of defects in rail head is the focus of this paper. The prototype includes an algorithm based on wavelet transform and outlier analysis. The discrete wavelet transform is utilized to denoise ultrasonic signals and to generate a set of relevant damage sensitive data. These data are combined into a damage index vector fed to an unsupervised learning…

Ultrasonic Guided Waves-BasedRailHSM MULTIVARIATE ANALYSISSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Improved Global-Local method for ultrasonic guided wave scattering predictions in composite waveguides and defects

2022

As structures increase in complexity, both in the use of advanced materials and high-performing designs such as composite assemblies, their health assessment becomes increasingly challenging. Ultrasonic guided waves (UGWs) have shown to be very promising in the inspection of large (i.e. aerospace components) attenuating (i.e. composite materials) structures and have been successfully employed for damage detection in a variety of fields. The intrinsic complex nature of UGWs, due to their dispersive behavior, combined with the structural complexity of the applications, though, requires improved inspection solutions of higher resolution and accuracy to ensure efficient and safe operations. The…

Ultrasonic guided waves scattering global-local SAFE composite NDESettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Temporal incoherent solitons supported by a defocusing nonlinearity with anomalous dispersion

2012

http://pra.aps.org/; International audience; We study temporal incoherent solitons in noninstantaneous response nonlinear media. Contrarily to the usual temporal soliton, which is known to require a focusing nonlinearity with anomalous dispersion, we show that a highly noninstantaneous nonlinear response leads to incoherent soliton structures which require the inverted situation: In the focusing regime (and anomalous dispersion) the incoherent wave packet experiences an unlimited spreading, whereas in the defocusing regime (still with anomalous dispersion) the incoherent wave packet exhibits a self-trapping. These counterintuitive results are explained in detail by a long-range Vlasov formu…

Wave packet01 natural sciencesSolitonsoptical instabilities010309 optics[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Quantum mechanics0103 physical sciencesDynamics of nonlinear optical systemsOptical solitons010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]and optical spatio-temporal dynamicsComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Atomic and Molecular Physics and Optics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Nonlinear systemoptical chaos and complexitySolitonnonlinear guided wavesMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

The role of evanescent modes in Global-Local analysis of UGW in plates with varying local zone-scatterer relations

2023

In order to provide a reliable and robust SHM performance, Ultrasonic Guided Waves (UGWs) need to be analyzed and understood. Numerical modeling of UGW propagation and scattering by hybrid methods offers the possibility of simulating UGW interaction with waveguides of arbitrary cross-sections and discontinuities. Maximizing the accuracy of such methods is important to perform quantitative SHM, while maintaining minimum computational cost. This work investigates the role of evanescent modes in the numerical analysis of UGWs in aluminum and composite plates with defects, by the hybrid Global-Local method. The complex solutions to the UGW eigenvalue problem are found and the scattering spectra…

evanescent modes numerical modeling scattering defect Ultrasonic Guided Waves Structural Health MonitoringSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Tailoring the excitation of fundamental flexural guide waves in coated bone by phase-delayed array: Two-dimensional simulations

2015

The fundamental flexural guided wave (FFGW) enables ultrasonic assessment of cortical bone thickness. In vivo, it is challenging to detect this mode, as its power ratio with respect to disturbing ultrasound is reduced by soft tissue covering the bone. A phase-delayed ultrasound source is proposed to tailor the FFGW excitation in order to improve its power ratio. This situation is analyzed by 2D finite-element simulations. The soft tissue coating (7-mm thick) was simulated as a fluid covering an elastic plate (bone, 2–6 mm thick). A six-element array of emitters on top of the coating was excited by 50-kHz tone bursts so that each emitter was appropriately delayed from the previous one. Respo…

fundamental flexural guided wavesGuided wave testingMaterials scienceAcoustics and Ultrasonicsta114business.industryultrasoundPhase (waves)engineering.materialmedicine.anatomical_structureOpticsLamb wavesArts and Humanities (miscellaneous)Coatingcortical bone thicknessmedicineengineeringCortical boneUltrasonic sensorbusinessExcitationCommon emitterta217Journal of the Acoustical Society of America
researchProduct

Evaluation of Clutch Plate Integrity with Non-Destructive Methods

2009

Abstract Nondestructive evaluation (NDE) represents an important phase in the life cycle of a product to detect defects both in service and in production. NDE techniques most commonly used to detect surface defects are visual inspection and methods based on eddy current and ultrasound. Laser and non-contact sensors have been recently used to inspect ultrasonically without contact. Components with complex geometry are usually inspected combining several NDE techniques, or simply visually where analysis and evaluation of results are performed by an operator based on specific parameters of acceptance. This last method is currently used to inspect the clutch plates since their complex geometry,…

product life cycle product control laser ultrasound guided wavesSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria Industriale
researchProduct

Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide

2018

The quest for large and low-frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, and to seismic wave abatement. For this purpose, a plethora of complex architectures (including multiphase materials) and multiphysics approaches have been proposed in the past, often involving difficulties in their practical realization. To address the issue of proposing a material design that enables large band gaps using a simple configuration, in this study we propose an easy-to-manufacture design able to open large, low-frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stif…

scanning laser Doppler vibrometerAbsorption (acoustics)Materials scienceBand gapAcousticsMaterials Science (miscellaneous)Vibration control02 engineering and technologyLow frequencyLamb band gaplcsh:Technology01 natural sciencesNoise (electronics)finite element simulationsLamb wavesphononic crystals and metamaterials; Lamb band gap; guided waves; finite element simulations; scanning laser Doppler vibrometer0103 physical sciencesCenter frequency010306 general physicsComputingMilieux_MISCELLANEOUS[PHYS]Physics [physics]guided waveslcsh:TIsotropyFinite element simulations; Guided waves; Lamb band gap; Phononic crystals and metamaterials; Scanning laser Doppler vibrometerphononic crystals and metamaterials021001 nanoscience & nanotechnology0210 nano-technology
researchProduct